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Abstract. Generating functions are found for decomposition of the space of homogeneous
polynomials of any degree in four variables into the direct sum of subspaces irreducible under
the groupHj,, the non-crystallographic Coxeter group of order 14400. The four variables are
coordinates of a vector from the defining four-dimensional representation space of the group. As
the defining representation we consider any of the four non-equivalent irreducible representations
of Hy of dimension four.

Analogous generating functions for the binary icosahedral gfgsipf order 120 (generated
by reflections, i.e. a subgroup of(® but not of S@3)) and for the dihedral groupl, of order
10 are also rederived and shown. The groups are naturally relatéti by Hz > Ho.

1. Introduction

The groupH, is the largest of its kind and as such it plays a special role in mathematics.
During the last decade its importance in physics applications has also emerged. Let us point
out, for example, that it contains as subgroups the icosahedral group, as well as all the other
point groups of three-dimensional physics. Thus it is natural to start by asking the most
intriguing question: What is its role in nature?

As far as we know the groupl, has occurred in the physics literature either in the
context of the physics of amorphous solids [1-6], biophysics [7], or quasicrystals [8,9]. In
the latter case it appears to play a rather basic role for a family of quasicrystals displaying
icosahedral symmetry and also all the other symmetries encountered in quasicrystal
experiments [9,10]. Moreover, one may expect that the roléfpfgoes well beyond
these fields because of its close relation to the largest exceptional simple Lie Bgoup
[8-11] which itself has been used in fundamental questions of particle theory. Namely, the
gauge group of the heterotic string theoryHg x Eg [12].

Basic properties of finite Coxeter groupsl, in particular, have been known for
some time [13,14]. They are of two types: the crystallographic and non-crystallographic
ones. They are best distinguished by the properties of their root systems. The former
are the symmetry groups of the root systems of the semisimple Lie algebras (Weyl
groups) and as such they are the point groups of the corresponding root lattices. The
non-crystallographic ones are all the others. Namely, the irreducible ones (connected
Coxeter diagram) are the three groufls C Hs C Hs considered in this paper and
the series of dihedral groups of orden,27 < n < oo. The fact that there is a root
system in the usual sense attached to a non-crystallographic Coxeter group was established

1 Permanent address:épartement de maématiques, Univergtde Monteal, Canada.
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only relatively recently [15]. Integer linear combinations of such roots are dense point
sets.

The groupH, is a subgroup of @) which is generated by four reflections acting in
the real Euclidean four-dimensional spak& Among the finite groups generated by any
number of reflections (Coxeter groups) it is singled out because it is not contained in any
larger finite irreducible non-crystallographic Coxeter group (among the crystallographic ones
it is found only in the Weyl group oEg [9, 11] and higher ones). One may rightly compare
the position ofH, among finite Coxeter groups with that B among the finite-dimensional
semisimple Lie algebras/groups. The orderfhfis 14 400. Besides the one-dimensional
representations, it has four inequivalent irreducible representations of dimension four, and
28 other irreducible representations of dimensions ranging from six to 36. Any one of the
four-dimensional representations can be chosen as the defining representation for the group;
below we denote such a representation by the syrmbol

Our goal in this paper is the following. We fix the representafibrand consider a
generic vectotX = (x1, x2, X3, x4), given relative to some basis Bf*, as being transformed
by the representation]l. The object of our interest is the spa@® spanned by the
homogeneous polynomials ify, x2, x3, x4 of any degreed. It is well known that this
space is completely reducible into the direct sum of subspaces irreducible under some
representations off;. Our problem is to decompose; with any 1< d < oo into the
direct sum of subspaces irreducible with respectto

At the same time we find the degrees and tig transformation properties of the
integrity basis for our problem. These are homogeneous polynomiats, imy, x3, x4
transforming according to some irreducible representatiofl0f Our aim is to determine
their existence, degrees in the four variables, &hdransformation properties. We do not
do this here, but it would be interesting to construct these tensors explicitly relative to some
basis ofR*.

An important simplest case is the integrity basis frinvariants or scalars. It is known
that the degrees of its four elements are 2, 12, 20, and 30 (cf table on p 87 in [13]). Every
other invariant which is a function of polynomials i, x», x3, x4 is constructed out of
them.

An efficient way to find the information about the elements of the integrity basis is
to construct the appropriate generating function. We construct it directly in a ‘positive’
form, characterized by the property that there are no cancellations during its development
into power series. The existence of the elements of the integrity basis, their degrees, and
transformation properties undéf, are then readily inferred from the positive form of the
generating function.

The main results of this paper are the generating functions forHhepolynomial
tensors in their positive form. More precisely, the generating function is constructed
for each of the four cases where the representafibims one of the four irreducible
representations off; of dimension four. Only one of the generating functions needs to
be calculated, the other three are obtained by certain elementary transformations of the
first one, which we indicate. It turns out that ti#& generating function is so large that
it is impractical to spell it out explicitly as a rational function. Nevertheless, there is a
concise way to provide all the details of the structure of that function in the form of several
tables.

As an independently interesting and didactic introduction to our problem and methods,
we find analogous generating functions for the two smaller groups closely relatdg to
These areHs, the icosahedral group of order 120 generated by three reflections, and the
group H», the dihedral group of order 10.
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Generating functions for scalars of finite groups of not very large orders have been
known for about a century as the Molien functions [16,17]. Many explicit examples can
be found in the physics literature (see for example [17-23]). McLellan [17] and Michel
[20] give a generalization by which generating functions of other irreducible representations
might be calculated; this traditional approach is based on the general property of characters,
see for example (2) in [21]. Although it would be conceivable to use computer algebra
to find the generating functions of this paper in the traditional way, we have followed a
different path which is far more rapid and economical. In fact our method would have
allowed us to find the generating function of this paper even by hand. The traditional
approach found generating functions for each irreducible representation separately; the
present method finds them all simultaneously. The generating function here is the sum
of the traditional ones.

The method employed in this paper has apparently not been used since its inception
[24]. It consists of finding the numerator and denominator of the generating function in the
desired form by a recursion process using only the decompositions of several lowest tensor
products of irreducible representations. One of the goals of this paper is to demonstrate for
a large case such &%, how efficient our method really is.

The generating functions fofH, can be found in [21]; those for the icosahedral
subgroup ofSO(3) and SU(2) in [21,22]. An explicit construction of polynomial tensor
integrity bases has been undertaken in [21,22,25] starting from the three-dimensional
representations.

An interesting problem naturally extending this paper, which we do not consider here,
is the actual construction of the tensors of the integrity bases as polynomials in,
x3, x4. Such a construction fof;, and particularly in the case aoff; where some of
the degrees of the desired tensors are rather large and the tensor components may have
many terms, would appear practical provided one uses a ba&$ imhich is ‘adapted’
to the symmetry groupH,. That is either the basis of simple roots & or its dual
[10, 26].

The next two sections introduce Coxeter groups in general (section 2i{{gnélz, and
H, (section 3). In section 4 the general form of the generating function is given. Crucial
for this paper are the recurrence relations (4.4) allowing us to compute the numerator of
the generating function. In sections 5, 6 and 7 we deal with the cHse$l;, and Hy,
respectively. The character tables are shown and the generating functions are described.
Important and instructive are thH, and Hs; examples of computing the numerators in
sections 5 and 6.

Irreducible representations df;, are identified and numbered in the corresponding
character table. The symbg| denotes théth irreducible representation. In column bf
each character table, containing the characters of the identity eleméfi, ohe finds the
dimensions of the representations.

2. Coxeter groups and their diagrams

A Coxeter groupW acting inR”, the n-dimensional real Euclidean space, is generated by
its elementary reflections,, r», ..., r,. To each reflection; one associates a reflection
plane (mirror) and a normalized vectos, called the simple root ofW, orthogonal

to the mirror. In order to define the groufW, angles between the simple roots (or
between the mirrors) have to be given. Finite Coxeter groups have been classified for
all<n < o0.
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A standard presentation of a Coxeter group [14] is provided by the identities
(rjr)™* jk=1...,n (2.1)

and by the Coxeter matrid = (m;;) with positive integer matrix elements. Two reflections,
sayr; andr,, are orthogonal if they commute, i.6:17,)% = 1. It follows from (2.1) that
the angle between thgh andkth mirrors isz/mj.. The corresponding angle between the
normals to the mirrors, the simple roats and oy, is thenmw — 7 /mjy.

A concise way to obtain the matri is to read its matrix elements off the corresponding
Coxeter diagram. Coxeter diagrams are drawn using the following conventions.

(i) Nodes of the diagram stand for the reflections. .., r, generating. The nodes
are assumed to be numbered as the reflections. The nodes can also be interpreted either as
the mirrors of a kaleidoscope or as suitably normalized veetors. ., «, (Simple roots of
W) orthogonal to the mirrors.

(i) A line linking the jth andkth nodes carries the integer;, of (2.1). The value
mjr = 3 is not shown in the diagram. The connecting line between nodes is omitted in the
casem;; = 2 (orthogonal reflection planes).

Pertinent examples of Coxeter diagrams are found in (3.1) and (3.2) below.

3. The Coxeter groupsH,, H3, H,

The finite non-crystallographic Coxeter groups are by definition the groups generated by
reflections which arenot the Weyl groups of semisimple Lie algebras. Explicitly, there

is the infinite series of dihedral groups (i.e. generated by two reflectioas?2) of order

ID| = 2m,

D,(7T<m < o0) 0—0 3.1)

and the three isolated groups

5 5 5
Hy . o—0—0—0 Hs: o—0—0 H . o—o0 3.2)

of orders 128, 120, and 10, respectively. Note thAb is the dihedral group and could
have been included in (3.1) as the case= 5; Hs is the (reflection generated) icosahedral
group. A close relation between the groulig, Hs, and H, is conveyed by the similarity
of their diagrams, in particular the inclusions

H, C H3 C Hy. (3.3)

For practical reasons we are excluding from consideration the Coxeter groups whose
generating reflections can be split into two subsets which are pairwise orthogonal. Such
groups would have disconnected Coxeter diagrams.

It is known that all finite non-crystallographic Coxeter groups with connected Coxeter
diagrams are those listed in (3.1) and (3.2).

Let us recall that the only group generated by a single reflection is the (crystallographic)
Coxeter/Weyl group of the simple Lie algebr; its order is 2. Restriction to non-
crystallographic groups excludes from (3.1) four dihedral Coxeter/Weyl groupsmth?,

3, 4, and 6. These are the Weyl groups of the semisimple Lie algebras A1, A»,
By >~ C,, and G, respectively.

In this paper we are interested i, and its representations. At the same time it is
useful and instructive to consider as well its lower dimensional analodiieand Hs, and
their irreducible representations. Basic information about irreducible representations of the
three groups is given by their character tables (tables 1, 3, and Al later).
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An explicit description ofH,4, Hs, and H is found, for example, in [10, 26]. We recall
that the Cartan matrix oH,, k = 2, 3, 4, is defined in the way standard in Lie theory,
that isC(Hy) := 2(o;, aj)/(aj, ) for 1 < i, j < k, where(, ) denotes the scalar product.
Using the conventions implied by the Coxeter diagram, we find readily from (3.2) the three
Cartan matrices:

2 -1 0
2 -t -1 2 -1 0 b4
(_T 2) (—01 _ZT —Zr) 0 -1 2 ¢ r_ZCosg.
0O -t 2
(3.4)

4. How the generating functions are derived

Our object is the derivation of generating functions for group tensors (i.e. tensors
transforming irreducibly under the corresponding group) whose components are polynomials
in the variables transforming irreducibly under the defintrdimensional representation of

Hi, k = 2,3, 4. The defining representation is denoted her&lbyn this representation the
reflection,r; (1 < i < k), generating the corresponding Coxeter group iskthek identity

matrix with theith row of the Cartan matrixC of (3.4) subtracted from théh column,

ie.

)jx = 8jx — 8ik Cy;j.- (4.1)

We also give the generating functions for tensors based on other equidimensional
representations which are so similar that no extra work is needed to obtain them.
The generating functions we seek will have the form

TS ipIAy
Fo() = == 4.2
T - “2

Here A is the dummy variable whose exponent equals the degree of the term it multiplies.
In the denominatoi® denotes an invariant of degrée (there are precisely of them). In

the numeratop} denotes the direct sum of polynomial tensors of degreghose which
contain denominator invariants as factors are excluded:

Pmax=d1+ - +di — k. 4.3)

The rest of this section deals with the determination pf. Along the way we also find
the values ofiq, . .., d;.
The derivations here are based on a procedure first used in [24]; it is much simpler than
the traditional Molien approach used, for example, in [21, 22].
Let {p} now denote the (reducible in general) representatiooflefined by the one-
row Young tableau ofp boxes acting in a space spanned by the polynomials of dggiee
the components dfl, and let [1] be the representation @f; acting in the space spanned by
the completely antisymmetric tensors of degida [, defined by the one-column Young
tableau ofi boxes. In particular, [ = O.
Fundamental is the recurrence relation

k
py=) (D11 {p—il (4.4)
i=1
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In starting the iteration of (4.4) we understand tha} is null for p < 0 and that{0} = x1
is the invariant representation &f,. Thus the first step of the iteration yields

LBW=NYe{0=0& x =0

The iteration of (4.4) to get highdp} is straightforward, except for modifications to

take account of the removal of the denominator invariants corresponding ia (4.2).
The modification is as follows. Fop equal to a sum ofn different integersd;, i.e.
p= Z;"zl di, 1<m<k, a term(—1)""1x; is removed from{p} before using (4.4) again
to get{p+1},...,{p+k}. Each newd is found as the value gf at which a new invariant

appears (one not removed by the modifications involving lodyes).

For most of the groups one encounters, the degrees of the invariants, appearing as the
exponentsl; of the denominator terms in (4.2), are known. The above procedure then leads
one readily to the desired generating function. If, however, the degrees of the denominator
terms have to be determined during the iteration process, one faces a dilemma gtjeach
where the scalar representatignappears: Is it due to a new denominator term of degree
and as such should it be discarded for the subsequent iteration steps, or is it a true numerator
term which has to be retained? Clearly the answer influences the results of subsequent steps.
In most cases it is a new denominator term one finds. Exceptionally, there may also be
a numerator termy;. A wrong decision concerning the dilemma often already leads to
contradictions at the next step of the iteration, as we explain oHzaexample at the end
of section 6.

A general test for a numerator scalar at degpeeonsists of checking the dimension
of {2p}, with terms involving powers of the denominator scalars as factors included. The
dimension of the representatiq@p} can be calculated independently to e+ 2p —
DI/(2p)Ik — D), but it will be greater by 1 if a numerator scalar ptwas treated
erroneously as a denominator scalar.

5. Generating functions for H,

The character table foH, is given in table 1. The defining irreducible representation
referred to ad] in section 4 isys.

Table 1. The character table aff, >~ Ds.

X la 2a 2b 5a
# 1 2 2 5
X1
X2

x3
X4

NN PP

Table 2. The multiplicities of irreducible representations B in {p}. Zero entries are not

shown.

p 0 1 2 3 4 5
x1 1

X2 1
X3 1 1

Xa 1 1
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The representation f1 needed in (4.4) isx,. The multiplicities of irreducible
representations contained{ip} are shown in table 2. The denominator scalars have degrees
2 and 5.

Using table 2 in (4.2) we find explicitly the desired generating function for the
polynomial tensors based gf:

X1+ Axz3+A%xa 4+ A3xa + Az + A%
1- AZ)(l — A9
A0+ X3+ xa) F A0+ x2+ X3+ xa) A+ 20+ xa) -
(5.1)

Here the interpretation of the terms of the expansion of the generating function into the
power series is the standard one for a generating function. For example the term containing
18 indicates that the polynomials of degree 6 transform as the reducible representation
X1 D x3D X3 D xa.

Very similar are the polynomial tensors basedan(i.e. whered stands fory, rather
than for x3). Their generating function is given by (4.2) using a modified table 2 in which
the rows opposites and x4 are interchanged.

Table 2 was obtained using the recursion relations (4.4) and the pglyef (4.3). Let
us now illustrate how the recursion relations are used to obtain table 2.

Starting from the chosen representatipn= O = [1}], we find by standard methods
also the antisymmetric part ofs ® x3 to be [P] = x,. Since x3 is two-dimensional,
[13] = 0. Hence (4.4) has two terms,

ipr=N1le{p-U+ D {p -2 (5.2)

By definition {p} = 0 for p < 0 and {0} = x;. Remembering that the termg,
corresponding to the contribution to the power series (5.1) from the denominator terms
are to be discarded, we find the followiig} for 1 < p < pmax=5:

{1} = x3

2} =x3@®@x3—x2®x1=x1+x2+xa—x2=x1+ x4 = xa
B=x3®@xa— x2® x3 = x4

B =x3®@xa— x2® xa = x3 (5.3)
Bl =x3®@x3— 2@ xa=x1+ x2= x2

6} =x3®@x2—x2® x3=0

{(1=0—-x2® x2=-—x1=0.

= x1+Axa+ 22001+ xa) + 23(x3 + xa)

Here the double arrow marks the places wheréas been discarded. Clearly the recursion
calculation terminates automatically whepax has been reached. Table 2 is a concise way
to present the information provided in (5.3).

6. Generating functions for H3

The character table off3 is given by table 3. The generating function we wish to find is
based on the three-dimensional representatipnit is referred to as] in section 4.
Antisymmetric parts of the powers ¢f; are as follows:

[1] = xa [1%] = x3 [1%] = x2 1Y =0 e (6.1)
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Table 3. The character table aoff3. The notation is described in section 7 in connection with
the character table aff,.

X la 22 2b 2¢c 3a 6a 5a 5 1 10
x> la la la la 3¢ 3a 5 5 5b 5a
x3 la 2a 2b 2¢ la 2a 5b 5a 10 1
# 1 1 15 15 20 20 12 12 12 12
X1 1 1 1 1 1 1 1 1 1 1
X2 1 -1 1 -1 1 -1 1 1 -1 -1
X3 3 3 -1 -1 0 0 T LA 14
X4 3 -3 -1 1 0 0 T T - -7’
X5 3 3 -1 -1 0 0 LA 1 14 T
X6 3 -3 -1 1 0 0 LA 4 -t -1
X7 4 4 0 0 1 1 1 -1 -1 -1
X8 4 -4 0 0 1 -1 1 -1 1 1
X9 5 5 1 1 -1 -1 0 0 0 0
X0 5 -5 1 -1 -1 1 0 0 0 0

Hence in this case there are three terms on the right-hand side of (4.4),
ip=llelp-B+EDRep -2+ 1% ®(p -3

The multiplicities of irreducible components of dlb} used in the recursion relations
(4.4) are shown in the columns of table 4. The denominator invariants have degrees 2, 6,
and 10.

Note that in table 4 the content of the line opposite each gyésthat of the preceding
odd line with each degreg subtracted from 15.

Very similar are the generating functions for polynomial tensors based on the other
three-dimensional representations i#f, namely x3, x5, and xg. Similarly to the case of
H,, the representationp} required in (4.4) are easily read from a modified table 4. The
modifications consist of the following.

(&) Whenys is [ the resulting tensorg; all have oddi. Fori odd the representation
x; appears at a degrgefor which eithery; or x;.1 is non-zero in table 4.

(b) When x5 is [ the resulting tensorg; all have oddi. They appear at the following
degrees.

(6.2)

X1
X3
Xs-
X7
X9

as shown in table 4 oppositg and x2;
as shown in table 4 oppositg and yxe;
as shown in table 4 oppositg and x4;
as shown in table 4 opposite and yxs;

as shown in table 4 opposite and y10.

(c) When e is O, then xs, xa, x5, xs, appear at the degrees shown in table 4 fgr
X6, X3, X4, respectively; the othey; appear as shown in table 4.

Let us now iterate (6.2) in order to show how table 4 is obtained starting from the
representationf0} = x1, {1} = x4, and putting{p} = 0 for p < 0. We have

(2 =x®@x4— 3@ x1+0=x1+ x9= xo
{B=xa®@x0— 3@ xa+ x2® x1= X6+ X8
B =xa® X6+ x8) — X3 ®@ X9+ X2 ® xa = X7+ Xo
(B} =xa® (x7+ x9) — x3® (X6 + x8) + X2 ® X9 = Xxa+ X6 + X10
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Table 4. The multiplicities of irreducible representations B appearing in{p} of (4.2). Zero
entries are not shown.

p 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x1 1

X2 1
xa 1 1 1

X4 1 1 1

x5 1 1 1

P 1 1 1

X7 1 1 1 1

P 1 1 1 1

o 1 1 1 1 1

Y10 1 1 1 1 1

{6} = xa® (xa+ x6 + x10) — X3 ® (X7 + X9) + X2 ® (X6 + X8)

= X1t X3+ X7+ X9 = X3+ X7+ X9
{7} =xa® (X3 + X7+ x9) — Xx3® (xa + X6 + x10) + X2 ® (X7 + X9) = X6 + X8 + X10
{8 = xa® (x6 + x8 + X10) — X3 ® (X3 + X7 + Xx9) + X2 ® (X4 + X6 + X10)

= — X1+ Xs+ X7+ Xo= X5+ X7+ Xo

{14} = x4 ® x10 — X3 ® (x5 + X7) + X2 ® (X8 + X10) = X3
(19 =x4Q@ x3— x3® x10+ X2 ® (x5 + x7) = X2

{16} = x4a®@ X2 — 3@ x3+ x2® x10=—x1 =0

(1 =-x3® x2+x2® x3=0

{18 = x2® x2 = x1 = 0.

So we have derived table 4 and shown that the non-trivial iteration of (6.2) stops
automatically atp = pmax = 15.

Note also that during the iteration one determines the degfee$ the denominator
terms of the generating function. Indeed, in the iteration the discgrdedcurred afpp = 2,
6, 10, 2+ 6410 = 18 while —x; was discarded gt = 2+6 = 8, 2+10= 12, 6+10= 16.

We now return to the dilemma mentioned at the end of section 4. The lowest example
where the ambiguity about the numerator or denominator origin of the jgrrarises
is the case of the generating function féf; based on the representatign instead
of x4. Although such a generating function was obtained above by the modification
rules (a)—(c), we could have calculated it directly by the iteration process. During
the iteration a numerator scalar arises at the giep- 15. It is easy to see that an
error has been made if it is removed as a denominator scalar: a-tegremains at
p =16.

7. Generating functions for Hy

The character table dfl, is table Al in the appendix [27]. Because of its size the following
shortcuts were adopted in comparison with the character tables 1 and 3. In the first
column an irreducible representatigf), is identified by its subscriptz only. Negative
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signs are shown as overbars of the corresponding entries. The character values are either
integers or of the fornia, b) and (a, b))’ wherea andb are integers. These are to be read
as

(a,b)=a+tb (a,b) =a+1'b T=11++5) U =11-V5. (7.1)

In the first line of the character table, headedihbyhe conjugacy classes of the elements
of H, are named. Each symbol contains the order of the elements of the class followed by
a letter in alphabetic order within each class. The lingsx®, andx® give the conjugacy
classes of the powers 2, 3, and 5 xf respectively. The line # shows the number of
elements in each conjugacy class.

The irreducible representation dff, referred to asl] in section 4 isy3. The
representations 1, [13], [1%] are, x7, x4, x2 respectively.

It is convenient to organize the tables {gf} separately fop even andp odd because
they contain mutually exclusive subsets of irreducible representations. Tables A2 and A3 of
the appendix give the irreducible representatignsontained in{p}: table A2 for p even,
table A3 for p odd. Note that the sum of the entries on a ljpeis equal to the dimension
of x;. The degrees of the denominator invariants are 2, 12, 20, and 30.

Certain irreducible representations occur in pairs, namely those with the following
subscripts:

12 34 56 1112 1314 1819 2021 27,28
32 32

The degree at which each of these appears is that of its partner subtracted from 60. Those
x; without a partner occur with the same multiplicity at deggeas at degree 66 p.

When is x4, xs, Or xg instead ofyz, we can give the generating function in terms of
that for ya.

O = x4. The representations {ll [1%], [14] are x7, xa, x2, respectively. The rows of
table A2 (p even) are unchanged. The rows of table A3ddd) corresponding to paired
representations are interchanged; the others are unaffected.

0 = xs. The representations . [1%], [1%] are xs, xs, x2, respectively. The rows
opposite the following pairs of; are interchanged:

7,8;11, 13,12, 14; 23, 24; 29, 30 in table A2;

3,5;4,6;16,17; 25, 26 in table A3.

All other rows are not changed.

00 = xe. The representationsqJl [1%], [1%] are xs, xs. x2, respectively. The following
pairs are interchanged:

7,8;11, 13, 12, 14; 23, 24; 29, 30 in table A2;

3,6;4,5;16,17, 18 19; 25, 26; 31, 32 in table A3.

All other rows are not changed.
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