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Abstract. Generating functions are found for decomposition of the space of homogeneous
polynomials of any degree in four variables into the direct sum of subspaces irreducible under
the groupH4, the non-crystallographic Coxeter group of order 14 400. The four variables are
coordinates of a vector from the defining four-dimensional representation space of the group. As
the defining representation we consider any of the four non-equivalent irreducible representations
of H4 of dimension four.

Analogous generating functions for the binary icosahedral groupH3 of order 120 (generated
by reflections, i.e. a subgroup of O(3) but not of SO(3)) and for the dihedral groupH2 of order
10 are also rederived and shown. The groups are naturally related byH4 ⊃ H3 ⊃ H2.

1. Introduction

The groupH4 is the largest of its kind and as such it plays a special role in mathematics.
During the last decade its importance in physics applications has also emerged. Let us point
out, for example, that it contains as subgroups the icosahedral group, as well as all the other
point groups of three-dimensional physics. Thus it is natural to start by asking the most
intriguing question: What is its role in nature?

As far as we know the groupH4 has occurred in the physics literature either in the
context of the physics of amorphous solids [1–6], biophysics [7], or quasicrystals [8, 9]. In
the latter case it appears to play a rather basic role for a family of quasicrystals displaying
icosahedral symmetry and also all the other symmetries encountered in quasicrystal
experiments [9, 10]. Moreover, one may expect that the role ofH4 goes well beyond
these fields because of its close relation to the largest exceptional simple Lie groupE8

[8–11] which itself has been used in fundamental questions of particle theory. Namely, the
gauge group of the heterotic string theory isE8 × E8 [12].

Basic properties of finite Coxeter groups,H4 in particular, have been known for
some time [13, 14]. They are of two types: the crystallographic and non-crystallographic
ones. They are best distinguished by the properties of their root systems. The former
are the symmetry groups of the root systems of the semisimple Lie algebras (Weyl
groups) and as such they are the point groups of the corresponding root lattices. The
non-crystallographic ones are all the others. Namely, the irreducible ones (connected
Coxeter diagram) are the three groupsH2 ⊂ H3 ⊂ H4 considered in this paper and
the series of dihedral groups of order 2n, 7 6 n < ∞. The fact that there is a root
system in the usual sense attached to a non-crystallographic Coxeter group was established
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only relatively recently [15]. Integer linear combinations of such roots are dense point
sets.

The groupH4 is a subgroup of O(4) which is generated by four reflections acting in
the real Euclidean four-dimensional spaceR4. Among the finite groups generated by any
number of reflections (Coxeter groups) it is singled out because it is not contained in any
larger finite irreducible non-crystallographic Coxeter group (among the crystallographic ones
it is found only in the Weyl group ofE8 [9, 11] and higher ones). One may rightly compare
the position ofH4 among finite Coxeter groups with that ofE8 among the finite-dimensional
semisimple Lie algebras/groups. The order ofH4 is 14 400. Besides the one-dimensional
representations, it has four inequivalent irreducible representations of dimension four, and
28 other irreducible representations of dimensions ranging from six to 36. Any one of the
four-dimensional representations can be chosen as the defining representation for the group;
below we denote such a representation by the symbol�.

Our goal in this paper is the following. We fix the representation� and consider a
generic vectorX = (x1, x2, x3, x4), given relative to some basis ofR4, as being transformed
by the representation�. The object of our interest is the spacePd spanned by the
homogeneous polynomials inx1, x2, x3, x4 of any degreed. It is well known that this
space is completely reducible into the direct sum of subspaces irreducible under some
representations ofH4. Our problem is to decomposePd with any 1 6 d < ∞ into the
direct sum of subspaces irreducible with respect toH4.

At the same time we find the degrees and theH4 transformation properties of the
integrity basis for our problem. These are homogeneous polynomials inx1, x2, x3, x4

transforming according to some irreducible representation ofH4. Our aim is to determine
their existence, degrees in the four variables, andH4 transformation properties. We do not
do this here, but it would be interesting to construct these tensors explicitly relative to some
basis ofR4.

An important simplest case is the integrity basis forH4 invariants or scalars. It is known
that the degrees of its four elements are 2, 12, 20, and 30 (cf table on p 87 in [13]). Every
other invariant which is a function of polynomials inx1, x2, x3, x4 is constructed out of
them.

An efficient way to find the information about the elements of the integrity basis is
to construct the appropriate generating function. We construct it directly in a ‘positive’
form, characterized by the property that there are no cancellations during its development
into power series. The existence of the elements of the integrity basis, their degrees, and
transformation properties underH4 are then readily inferred from the positive form of the
generating function.

The main results of this paper are the generating functions for theH4 polynomial
tensors in their positive form. More precisely, the generating function is constructed
for each of the four cases where the representation� is one of the four irreducible
representations ofH4 of dimension four. Only one of the generating functions needs to
be calculated, the other three are obtained by certain elementary transformations of the
first one, which we indicate. It turns out that theH4 generating function is so large that
it is impractical to spell it out explicitly as a rational function. Nevertheless, there is a
concise way to provide all the details of the structure of that function in the form of several
tables.

As an independently interesting and didactic introduction to our problem and methods,
we find analogous generating functions for the two smaller groups closely related toH4.
These areH3, the icosahedral group of order 120 generated by three reflections, and the
groupH2, the dihedral group of order 10.



Generating functions for H4 7707

Generating functions for scalars of finite groups of not very large orders have been
known for about a century as the Molien functions [16, 17]. Many explicit examples can
be found in the physics literature (see for example [17–23]). McLellan [17] and Michel
[20] give a generalization by which generating functions of other irreducible representations
might be calculated; this traditional approach is based on the general property of characters,
see for example (2) in [21]. Although it would be conceivable to use computer algebra
to find the generating functions of this paper in the traditional way, we have followed a
different path which is far more rapid and economical. In fact our method would have
allowed us to find the generating function of this paper even by hand. The traditional
approach found generating functions for each irreducible representation separately; the
present method finds them all simultaneously. The generating function here is the sum
of the traditional ones.

The method employed in this paper has apparently not been used since its inception
[24]. It consists of finding the numerator and denominator of the generating function in the
desired form by a recursion process using only the decompositions of several lowest tensor
products of irreducible representations. One of the goals of this paper is to demonstrate for
a large case such asH4 how efficient our method really is.

The generating functions forH2 can be found in [21]; those for the icosahedral
subgroup ofSO(3) and SU(2) in [21, 22]. An explicit construction of polynomial tensor
integrity bases has been undertaken in [21, 22, 25] starting from the three-dimensional
representations.

An interesting problem naturally extending this paper, which we do not consider here,
is the actual construction of the tensors of the integrity bases as polynomials inx1, x2,
x3, x4. Such a construction forHk, and particularly in the case ofH4 where some of
the degrees of the desired tensors are rather large and the tensor components may have
many terms, would appear practical provided one uses a basis inRk which is ‘adapted’
to the symmetry groupHk. That is either the basis of simple roots ofHk or its dual
[10, 26].

The next two sections introduce Coxeter groups in general (section 2) andH4, H3, and
H2 (section 3). In section 4 the general form of the generating function is given. Crucial
for this paper are the recurrence relations (4.4) allowing us to compute the numerator of
the generating function. In sections 5, 6 and 7 we deal with the casesH2, H3, and H4,
respectively. The character tables are shown and the generating functions are described.
Important and instructive are theH2 and H3 examples of computing the numerators in
sections 5 and 6.

Irreducible representations ofHk are identified and numbered in the corresponding
character table. The symbolχi denotes theith irreducible representation. In column 1a of
each character table, containing the characters of the identity element ofHk, one finds the
dimensions of the representations.

2. Coxeter groups and their diagrams

A Coxeter groupW acting inRn, the n-dimensional real Euclidean space, is generated by
its elementary reflectionsr1, r2, . . . , rn. To each reflectionrk one associates a reflection
plane (mirror) and a normalized vectorαk, called the simple root ofW , orthogonal
to the mirror. In order to define the groupW , angles between the simple roots (or
between the mirrors) have to be given. Finite Coxeter groups have been classified for
all 1 6 n < ∞.



7708 C S Lam et al

A standard presentation of a Coxeter group [14] is provided by the identities

(rj rk)
mjk j, k = 1, . . . , n (2.1)

and by the Coxeter matrixM = (mjk) with positive integer matrix elements. Two reflections,
say r1 and r2, are orthogonal if they commute, i.e.(r1r2)

2 = 1. It follows from (2.1) that
the angle between thej th andkth mirrors isπ/mjk. The corresponding angle between the
normals to the mirrors, the simple rootsαj andαk, is thenπ − π/mjk.

A concise way to obtain the matrixM is to read its matrix elements off the corresponding
Coxeter diagram. Coxeter diagrams are drawn using the following conventions.

(i) Nodes of the diagram stand for the reflectionsr1, . . . , rn generatingW . The nodes
are assumed to be numbered as the reflections. The nodes can also be interpreted either as
the mirrors of a kaleidoscope or as suitably normalized vectorsα1, . . . , αn (simple roots of
W ) orthogonal to the mirrors.

(ii) A line linking the j th andkth nodes carries the integermjk of (2.1). The value
mjk = 3 is not shown in the diagram. The connecting line between nodes is omitted in the
casemjk = 2 (orthogonal reflection planes).

Pertinent examples of Coxeter diagrams are found in (3.1) and (3.2) below.

3. The Coxeter groupsH2, H3, H4

The finite non-crystallographic Coxeter groups are by definition the groups generated by
reflections which arenot the Weyl groups of semisimple Lie algebras. Explicitly, there
is the infinite series of dihedral groups (i.e. generated by two reflections,n = 2) of order
|D| = 2m,

Dm(7 6 m < ∞)
m◦—◦ (3.1)

and the three isolated groups

H4 : ◦—◦—
5◦—◦ H3 : ◦—

5◦—◦ H2 :
5◦—◦ (3.2)

of orders 1202, 120, and 10, respectively. Note thatH2 is the dihedral group and could
have been included in (3.1) as the casem = 5; H3 is the (reflection generated) icosahedral
group. A close relation between the groupsH4, H3, andH2 is conveyed by the similarity
of their diagrams, in particular the inclusions

H2 ⊂ H3 ⊂ H4. (3.3)

For practical reasons we are excluding from consideration the Coxeter groups whose
generating reflections can be split into two subsets which are pairwise orthogonal. Such
groups would have disconnected Coxeter diagrams.

It is known that all finite non-crystallographic Coxeter groups with connected Coxeter
diagrams are those listed in (3.1) and (3.2).

Let us recall that the only group generated by a single reflection is the (crystallographic)
Coxeter/Weyl group of the simple Lie algebraA1; its order is 2. Restriction to non-
crystallographic groups excludes from (3.1) four dihedral Coxeter/Weyl groups withm = 2,
3, 4, and 6. These are the Weyl groups of the semisimple Lie algebrasA1 + A1, A2,
B2 ' C2, andG2, respectively.

In this paper we are interested inH4 and its representations. At the same time it is
useful and instructive to consider as well its lower dimensional analogues,H2 andH3, and
their irreducible representations. Basic information about irreducible representations of the
three groups is given by their character tables (tables 1, 3, and A1 later).
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An explicit description ofH4, H3, andH2 is found, for example, in [10, 26]. We recall
that the Cartan matrix ofHk, k = 2, 3, 4, is defined in the way standard in Lie theory,
that isC(Hk) := 2(αi, αj )/(αj , αj ) for 1 6 i, j 6 k, where(, ) denotes the scalar product.
Using the conventions implied by the Coxeter diagram, we find readily from (3.2) the three
Cartan matrices:

(
2 −τ

−τ 2

) ( 2 −1 0
−1 2 −τ

0 −τ 2

) 
2 −1 0 0

−1 2 −1 0
0 −1 2 −τ

0 0 −τ 2

 τ = 2 cos
π

5
.

(3.4)

4. How the generating functions are derived

Our object is the derivation of generating functions for group tensors (i.e. tensors
transforming irreducibly under the corresponding group) whose components are polynomials
in the variables transforming irreducibly under the definingk-dimensional representation of
Hk, k = 2, 3, 4. The defining representation is denoted here by�. In this representation the
reflection,ri(1 6 i 6 k), generating the corresponding Coxeter group is thek × k identity
matrix with the ith row of the Cartan matrixC of (3.4) subtracted from theith column,
i.e.

(ri)jk = δjk − δikCkj . (4.1)

We also give the generating functions for tensors based on other equidimensional
representations which are so similar that no extra work is needed to obtain them.

The generating functions we seek will have the form

F�(λ) =
∑pmax

p=0{p}λp∏k
i=1(1 − λdi )

. (4.2)

Hereλ is the dummy variable whose exponent equals the degree of the term it multiplies.
In the denominatorλdi denotes an invariant of degreedi (there are preciselyk of them). In
the numerator{p} denotes the direct sum of polynomial tensors of degreep; those which
contain denominator invariants as factors are excluded:

pmax = d1 + · · · + dk − k. (4.3)

The rest of this section deals with the determination of{p}. Along the way we also find
the values ofd1, . . . , dk.

The derivations here are based on a procedure first used in [24]; it is much simpler than
the traditional Molien approach used, for example, in [21, 22].

Let {p} now denote the (reducible in general) representation ofHk defined by the one-
row Young tableau ofp boxes acting in a space spanned by the polynomials of degreep in
the components of�, and let [1i ] be the representation ofHk acting in the space spanned by
the completely antisymmetric tensors of degreei in �, defined by the one-column Young
tableau ofi boxes. In particular, [11] = �.

Fundamental is the recurrence relation

{p} =
k∑

i=1

(−1)i−1[1i ] ⊗ {p − i}. (4.4)
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In starting the iteration of (4.4) we understand that{p} is null for p < 0 and that{0} = χ1

is the invariant representation ofHk. Thus the first step of the iteration yields

{1} = [11] ⊗ {0} = � ⊗ χ1 = �.

The iteration of (4.4) to get higher{p} is straightforward, except for modifications to
take account of the removal of the denominator invariants corresponding toλdi in (4.2).
The modification is as follows. Forp equal to a sum ofm different integersdi , i.e.
p = ∑m

j=1 dij , 1 6 m 6 k, a term(−1)m−1χ1 is removed from{p} before using (4.4) again
to get{p+1}, . . . , {p+k}. Each newdi is found as the value ofp at which a new invariant
appears (one not removed by the modifications involving lowerdi ’s).

For most of the groups one encounters, the degrees of the invariants, appearing as the
exponentsdi of the denominator terms in (4.2), are known. The above procedure then leads
one readily to the desired generating function. If, however, the degrees of the denominator
terms have to be determined during the iteration process, one faces a dilemma at each{p}
where the scalar representationχ1 appears: Is it due to a new denominator term of degreep

and as such should it be discarded for the subsequent iteration steps, or is it a true numerator
term which has to be retained? Clearly the answer influences the results of subsequent steps.
In most cases it is a new denominator term one finds. Exceptionally, there may also be
a numerator termχ1. A wrong decision concerning the dilemma often already leads to
contradictions at the next step of the iteration, as we explain on anH3 example at the end
of section 6.

A general test for a numerator scalar at degreep consists of checking the dimension
of {2p}, with terms involving powers of the denominator scalars as factors included. The
dimension of the representation{2p} can be calculated independently to be(k + 2p −
1)!/((2p)!(k − 1)!), but it will be greater by 1 if a numerator scalar atp was treated
erroneously as a denominator scalar.

5. Generating functions for H2

The character table forH2 is given in table 1. The defining irreducible representation
referred to as� in section 4 isχ3.

Table 1. The character table ofH2 ' D5.

x 1a 2a 2b 5a

# 1 2 2 5

χ1 1 1 1 1
χ2 1 1 1 −1
χ3 2 −τ ′ −τ 0
χ4 2 −τ −τ ′ 0

Table 2. The multiplicities of irreducible representations ofH2 in {p}. Zero entries are not
shown.

p 0 1 2 3 4 5

χ1 1
χ2 1
χ3 1 1
χ4 1 1
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The representation [12] needed in (4.4) isχ2. The multiplicities of irreducible
representations contained in{p} are shown in table 2. The denominator scalars have degrees
2 and 5.

Using table 2 in (4.2) we find explicitly the desired generating function for the
polynomial tensors based onχ3:

χ1 + λχ3 + λ2χ4 + λ3χ4 + λ4χ3 + λ5χ2

(1 − λ2)(1 − λ5)
= χ1 + λχ3 + λ2(χ1 + χ4) + λ3(χ3 + χ4)

+λ4(χ1 + χ3 + χ4) + λ5(χ1 + χ2 + χ3 + χ4) + λ6(χ1 + 2χ3 + χ4) + · · · .
(5.1)

Here the interpretation of the terms of the expansion of the generating function into the
power series is the standard one for a generating function. For example the term containing
λ6 indicates that the polynomials of degree 6 transform as the reducible representation
χ1 ⊕ χ3 ⊕ χ3 ⊕ χ4.

Very similar are the polynomial tensors based onχ4 (i.e. where� stands forχ4 rather
than forχ3). Their generating function is given by (4.2) using a modified table 2 in which
the rows oppositeχ3 andχ4 are interchanged.

Table 2 was obtained using the recursion relations (4.4) and the valuepmax of (4.3). Let
us now illustrate how the recursion relations are used to obtain table 2.

Starting from the chosen representationχ3 = � = [11], we find by standard methods
also the antisymmetric part ofχ3 ⊗ χ3 to be [12] = χ2. Sinceχ3 is two-dimensional,
[13] = 0. Hence (4.4) has two terms,

{p} = [1] ⊗ {p − 1} + (−1)[12] ⊗ {p − 2}. (5.2)

By definition {p} = 0 for p < 0 and {0} = χ1. Remembering that the termsχ1

corresponding to the contribution to the power series (5.1) from the denominator terms
are to be discarded, we find the following{p} for 1 6 p 6 pmax = 5:

{1} = χ3

{2} = χ3 ⊗ χ3 − χ2 ⊗ χ1 = χ1 + χ2 + χ4 − χ2 = χ1 + χ4 ⇒ χ4

{3} = χ3 ⊗ χ4 − χ2 ⊗ χ3 = χ4

{4} = χ3 ⊗ χ4 − χ2 ⊗ χ4 = χ3 (5.3)

{5} = χ3 ⊗ χ3 − χ2 ⊗ χ4 = χ1 + χ2 ⇒ χ2

{6} = χ3 ⊗ χ2 − χ2 ⊗ χ3 = 0

{7} = 0 − χ2 ⊗ χ2 = −χ1 ⇒ 0.

Here the double arrow marks the places whereχ1 has been discarded. Clearly the recursion
calculation terminates automatically whenpmax has been reached. Table 2 is a concise way
to present the information provided in (5.3).

6. Generating functions for H3

The character table ofH3 is given by table 3. The generating function we wish to find is
based on the three-dimensional representationχ4. It is referred to as� in section 4.

Antisymmetric parts of the powers ofχ4 are as follows:

[1] = χ4 [12] = χ3 [13] = χ2 [14] = 0 . . . . (6.1)
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Table 3. The character table ofH3. The notation is described in section 7 in connection with
the character table ofH4.

x 1a 2a 2b 2c 3a 6a 5a 5b 10a 10b
x2 1a 1a 1a 1a 3a 3a 5b 5a 5b 5a

x3 1a 2a 2b 2c 1a 2a 5b 5a 10b 10a

# 1 1 15 15 20 20 12 12 12 12

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 −1 1 1 −1 −1
χ3 3 3 −1 −1 0 0 τ τ ′ τ τ ′
χ4 3 −3 −1 1 0 0 τ τ ′ −τ −τ ′
χ5 3 3 −1 −1 0 0 τ ′ τ τ ′ τ

χ6 3 −3 −1 1 0 0 τ ′ τ −τ ′ −τ

χ7 4 4 0 0 1 1 −1 −1 −1 −1
χ8 4 −4 0 0 1 −1 −1 −1 1 1
χ9 5 5 1 1 −1 −1 0 0 0 0
χ10 5 −5 1 −1 −1 1 0 0 0 0

Hence in this case there are three terms on the right-hand side of (4.4),

{p} = [1] ⊗ {p − 1} + (−1)[12] ⊗ {p − 2} + [13] ⊗ {p − 3}. (6.2)

The multiplicities of irreducible components of all{p} used in the recursion relations
(4.4) are shown in the columns of table 4. The denominator invariants have degrees 2, 6,
and 10.

Note that in table 4 the content of the line opposite each evenχi is that of the preceding
odd line with each degreep subtracted from 15.

Very similar are the generating functions for polynomial tensors based on the other
three-dimensional representations ofH3, namelyχ3, χ5, andχ6. Similarly to the case of
H2, the representations{p} required in (4.4) are easily read from a modified table 4. The
modifications consist of the following.

(a) Whenχ3 is � the resulting tensorsχi all have oddi. For i odd the representation
χi appears at a degreep for which eitherχi or χi+1 is non-zero in table 4.

(b) Whenχ5 is � the resulting tensorsχi all have oddi. They appear at the following
degrees.

χ1: as shown in table 4 oppositeχ1 andχ2;
χ3: as shown in table 4 oppositeχ5 andχ6;
χ5: as shown in table 4 oppositeχ3 andχ4;
χ7: as shown in table 4 oppositeχ7 andχ8;
χ9: as shown in table 4 oppositeχ9 andχ10.
(c) Whenχ6 is �, thenχ3, χ4, χ5, χ6, appear at the degrees shown in table 4 forχ5,

χ6, χ3, χ4, respectively; the otherχi appear as shown in table 4.
Let us now iterate (6.2) in order to show how table 4 is obtained starting from the

representations{0} = χ1, {1} = χ4, and putting{p} = 0 for p < 0. We have

{2} = χ4 ⊗ χ4 − χ3 ⊗ χ1 + 0 = χ1 + χ9 ⇒ χ9

{3} = χ4 ⊗ χ9 − χ3 ⊗ χ4 + χ2 ⊗ χ1 = χ6 + χ8

{4} = χ4 ⊗ (χ6 + χ8) − χ3 ⊗ χ9 + χ2 ⊗ χ4 = χ7 + χ9

{5} = χ4 ⊗ (χ7 + χ9) − χ3 ⊗ (χ6 + χ8) + χ2 ⊗ χ9 = χ4 + χ6 + χ10
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Table 4. The multiplicities of irreducible representations ofH3 appearing in{p} of (4.2). Zero
entries are not shown.

p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

χ1 1
χ2 1
χ3 1 1 1
χ4 1 1 1
χ5 1 1 1
χ6 1 1 1
χ7 1 1 1 1
χ8 1 1 1 1
χ9 1 1 1 1 1
χ10 1 1 1 1 1

{6} = χ4 ⊗ (χ4 + χ6 + χ10) − χ3 ⊗ (χ7 + χ9) + χ2 ⊗ (χ6 + χ8)

= χ1 + χ3 + χ7 + χ9 ⇒ χ3 + χ7 + χ9

{7} = χ4 ⊗ (χ3 + χ7 + χ9) − χ3 ⊗ (χ4 + χ6 + χ10) + χ2 ⊗ (χ7 + χ9) = χ6 + χ8 + χ10

{8} = χ4 ⊗ (χ6 + χ8 + χ10) − χ3 ⊗ (χ3 + χ7 + χ9) + χ2 ⊗ (χ4 + χ6 + χ10)

= − χ1 + χ5 + χ7 + χ9 ⇒ χ5 + χ7 + χ9

...

{14} = χ4 ⊗ χ10 − χ3 ⊗ (χ5 + χ7) + χ2 ⊗ (χ8 + χ10) = χ3

{15} = χ4 ⊗ χ3 − χ3 ⊗ χ10 + χ2 ⊗ (χ5 + χ7) = χ2

{16} = χ4 ⊗ χ2 − χ3 ⊗ χ3 + χ2 ⊗ χ10 = −χ1 ⇒ 0

{17} = −χ3 ⊗ χ2 + χ2 ⊗ χ3 = 0

{18} = χ2 ⊗ χ2 = χ1 ⇒ 0.

So we have derived table 4 and shown that the non-trivial iteration of (6.2) stops
automatically atp = pmax = 15.

Note also that during the iteration one determines the degreesdi of the denominator
terms of the generating function. Indeed, in the iteration the discardedχ1 occurred atp = 2,
6, 10, 2+6+10 = 18 while−χ1 was discarded atp = 2+6 = 8, 2+10 = 12, 6+10 = 16.

We now return to the dilemma mentioned at the end of section 4. The lowest example
where the ambiguity about the numerator or denominator origin of the termχ1 arises
is the case of the generating function forH3 based on the representationχ3 instead
of χ4. Although such a generating function was obtained above by the modification
rules (a)–(c), we could have calculated it directly by the iteration process. During
the iteration a numerator scalar arises at the stepp = 15. It is easy to see that an
error has been made if it is removed as a denominator scalar: a term−χ3 remains at
p = 16.

7. Generating functions for H4

The character table ofH4 is table A1 in the appendix [27]. Because of its size the following
shortcuts were adopted in comparison with the character tables 1 and 3. In the first
column an irreducible representationχm is identified by its subscriptm only. Negative
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signs are shown as overbars of the corresponding entries. The character values are either
integers or of the form(a, b) and (a, b)′ wherea andb are integers. These are to be read
as

(a, b) = a + τb (a, b)′ = a + τ ′b τ = 1
2(1 +

√
5) τ ′ = 1

2(1 −
√

5). (7.1)

In the first line of the character table, headed byx, the conjugacy classes of the elements
of H4 are named. Each symbol contains the order of the elements of the class followed by
a letter in alphabetic order within each class. The linesx2, x3, andx5 give the conjugacy
classes of the powers 2, 3, and 5 ofx, respectively. The line # shows the number of
elements in each conjugacy class.

The irreducible representation ofH4 referred to as� in section 4 isχ3. The
representations [12], [13], [14] are,χ7, χ4, χ2 respectively.

It is convenient to organize the tables of{p} separately forp even andp odd because
they contain mutually exclusive subsets of irreducible representations. Tables A2 and A3 of
the appendix give the irreducible representationsχi contained in{p}: table A2 forp even,
table A3 forp odd. Note that the sum of the entries on a lineχi is equal to the dimension
of χi . The degrees of the denominator invariants are 2, 12, 20, and 30.

Certain irreducible representations occur in pairs, namely those with the following
subscripts:

1, 2 3, 4 5, 6 11, 12 13, 14 18, 19 20, 21 27, 28

32, 32.

The degree at which each of these appears is that of its partner subtracted from 60. Those
χi without a partner occur with the same multiplicity at degreep as at degree 60− p.

When� is χ4, χ5, or χ6 instead ofχ3, we can give the generating function in terms of
that for χ3.

� = χ4. The representations [12], [13], [14] are χ7, χ3, χ2, respectively. The rows of
table A2 (p even) are unchanged. The rows of table A3 (p odd) corresponding to paired
representations are interchanged; the others are unaffected.

� = χ5. The representations [12], [13], [14] are χ8, χ6, χ2, respectively. The rows
opposite the following pairs ofχi are interchanged:

7, 8; 11, 13; 12, 14; 23, 24; 29, 30 in table A2;
3, 5; 4, 6; 16, 17; 25, 26 in table A3.

All other rows are not changed.
� = χ6. The representations [12], [13], [14] areχ8, χ5, χ2, respectively. The following

pairs are interchanged:
7, 8; 11, 13; 12, 14; 23, 24; 29, 30 in table A2;
3, 6; 4, 5; 16, 17; 18, 19; 25, 26; 31, 32 in table A3.

All other rows are not changed.
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